Department of

September 2021 October 2021 November 2021 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 2 1 2 3 4 5 6 5 6 7 8 9 10 11 3 4 5 6 7 8 9 7 8 9 10 11 12 13 12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20 19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27 26 27 28 29 30 24 25 26 27 28 29 30 28 29 30 31

Tuesday, March 16, 2021

**Abstract:** Pick any finite number of points in a Hilbert space. If they coincide with vertices of a parallelepiped then the sum of the squares of the lengths of its sides equals the sum of the squares of the lengths of the diagonals (parallelogram law). If the points are in a general position then we can define sides and diagonals by labeling these points via vertices of the discrete cube {0,1}^n. In this case the sum of the squares of diagonals is bounded by the sum of the squares of its sides no matter how you label the points and what n you choose. In a general Banach space we do not have parallelogram law. Back in 1978 Enflo asked: in an arbitrary Banach space if the sum of the squares of diagonals is bounded by the sum of the squares of its sides for all parallelepipeds (up to a universal constant), does the same estimate hold for any finite number of points (not necessarily vertices of the parallelepiped)? In the joint work with Ramon van Handel and Sasha Volberg we positively resolve Enflo's problem. Banach spaces satisfying the inequality with parallelepipeds are called of type 2 (Rademacher type 2), and Banach spaces satisfying the inequality for all points are called of Enflo type 2. In particular, we show that Rademacher type and Enflo type coincide.

Tuesday, March 23, 2021

Tuesday, March 30, 2021

Tuesday, April 6, 2021

Wednesday, April 14, 2021

Tuesday, April 20, 2021

Monday, April 26, 2021

Tuesday, April 27, 2021

Tuesday, May 4, 2021

Tuesday, August 24, 2021

Tuesday, August 31, 2021

Tuesday, September 7, 2021

Thursday, September 23, 2021

Thursday, September 30, 2021

Thursday, October 7, 2021

Thursday, October 14, 2021

Thursday, October 21, 2021

Thursday, October 28, 2021

Thursday, November 4, 2021

Thursday, November 11, 2021

Thursday, November 18, 2021